2023年《烙饼问题》教学设计3篇

《烙饼问题》教学设计1  教学目标:  1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。  2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分下面是小编为大家整理的2023年《烙饼问题》教学设计3篇,供大家参考。

2023年《烙饼问题》教学设计3篇

《烙饼问题》教学设计1

  教学目标:

  1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

  2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

  3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

  教学重点:

  初步培养学生形成从多种方案中寻找最优方案的意识。

  教学难点:

  寻找合理、快捷的烙饼方案。

  教材简析:

  《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

  教学过程:

  一、预设情景,走进生活。

  师:同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

  生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

  生2:只需要5分钟,把5个鸡蛋一起放进锅里。

  师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

  ——板书:烙饼问题

  (设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效)

  二、围绕主题,探索新知。

  1、解读信息,理解烙饼规则。

  师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

  生:每次只能烙2张饼;两面都要烙;每面3分钟。

  师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼)那如果我只放1张饼行吗?师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙)

  2、观察法,探究烙2张饼的最优方法。

  师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

  生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

  师:如果要烙2张饼呢,最少需要几分钟?

  生1:1张饼要6分钟,烙2张饼就要12分钟。

  生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

  师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

  生:2张饼同时烙。

  师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

  3、动手操作,探究烙3张饼的最优方法。

  师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节省时间。

  (1)学生尝试烙饼。(教师巡视并做个别指导)

  (2)汇报交流。(预计有18分钟、12分钟、9分钟)

  预设:

  ①一张一张烙:烙一张要:3+3=6(分钟)烙三张要:6×3=18(分钟)

  ②先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟)师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

  师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

  ③饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

  (3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

  (4)集体交流,对比择优。

  师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

  生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

  小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

  你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。板书:交替烙法

  (设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力)

  4、总结方法,探究规律

  (1)脱离学具,思考烙4张饼的最优方法

  师:如果要烙4张饼,怎样烙才能最节省时间?

  师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

  (2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

  生:先烙2个,再烙3个。

  师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

  (3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

  师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

  (4)发现规律。

  师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律)师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

  烙饼所用的最少时间与饼的张数有什么关系?

  生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价)生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

  师:“3”是什么?

  生:“3”是烙一面需要3分钟。

  师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

  生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

  (设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用)

  三、全课总结

  今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

《烙饼问题》教学设计2

  一、教学内容

  人教版义务教育课标实验教材(四上)112的例1

  二、教学目标

  1、通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应  用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的意识。

  2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。

  3、能积极地参与数学学习活动,体会到学习数学的乐趣。

  三、教学准备:

  多媒体课件;教师准备3个圆片代饼;每组3个圆片;

  四、教学过程

  (一)、谈话导入

  同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。

  (二)新课

  1、自主学习

  (1)出示本节课的学习目标,请同学们朗读。

  (2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的`前提是什么?

  (3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?

  (4)在小组内交流:烙三张饼最短用多少时间?

  (5)小组汇报:如何烙三张饼用时最短?

  第一张第二张第三张所花时间

  第一次

  第二次

  第三次

  2、探究烙饼最佳方法

  (1)烙4张饼最快要分钟,烙5张要分钟,烙6张要分钟,烙7张要分钟,烙8张要分钟,烙9张要分钟,10张要分钟。

  (2)你发现了什么?

  (3)学生思考、观察、发现、汇报

  烙的方法所花时间

  3张饼

  4张饼

  5张饼

  6张饼

  7张饼

  8张饼

  9张饼

  (三)过关检测

  出示三道小题,请同学们解决,说一说解决的方法。

  (四)、小节

  师:这节课我们一块儿研究了烙饼问题,大家有什么收获?

  小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。

《烙饼问题》教学设计3

  教学内容:人教版四年级上册数学第105页例2。

  教学目标:

  1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

  2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。

  3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。

  教学重、难点:

  重点:能够用优化思想解决生活中的问题。

  难点:在烙饼优化的过程中三张饼的烙法。

  教具学具准备:

  多媒体课件、圆形纸片若干。

  教学过程:

  一、直奔主题

  同学们,今天我们一起来研究一个有趣的数学问题。

  二、探究新知

  1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。

  2、研究烙一张饼需要的时间。

  师问“烙一张饼需要多长时间?”学生口答说想法。

  3、研究烙两张饼需要的时间。

  师问:“烙两张饼需要多长时间?”学生口答说想法。

  [设计意图:在烙三张饼前铺垫烙一张饼和两张饼的方法,利于学生由易到难由浅入深地思考问题,为新知的探究奠定基础。]

  4、对比烙一张饼和烙两张饼需要的时间。

  师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”

  生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。

  [设计意图:让学生对比烙1张饼和烙2张饼的最短时间,旨在让学生明白“同时烙”的优势在于节省时间,从而为下一步的继续探究提供思维支撑。]

  5、研究烙三张饼所需要的时间

  师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”

  [设计意图:学生先自主尝试烙,不但给学生提供了思维的时间和空间,而且利于学生暴露自已的真实想法,为教师进一步调控课堂提供了依据。]

  学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。

  学生先演示,师再示范摆。

  小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。

  [设计意图:三张饼的最佳烙法是本节课的重点。重点问题重点处理,学生有了透彻清晰的理解才能为接下来的学习扫清障碍。]

  6、研究烙四——七张饼所需要的时间。

  教师依次提出问题,生或口算或演示。

  [设计意图:授人以鱼不如授人以渔,有了前面的学习方法的“扶”,四——七张饼的烙法教师完全放手让学生去尝试交流,有助于培养学生的学习能力和独立解决问题的能力。]

  7、寻找规律

  师:认真观察上面的表格,你能发现什么?

  学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的时间都等于烙饼的张数*烙一面饼所需的时间。

  8、点明课题

  师:这就是我们这节课要研究的烙饼问题(板书课题)

  在学生解释图意的基础上用投影整理出以下三条:

  生1:每次最多只能同时放两张饼。师:什么意思?

  生2:一个饼的两面都要烙,烙一面需要花3分钟。

  2.思考烙2个饼

  那两张饼你准备怎么烙?请用手势说明一下。很好,在学数学时可以借助我们的身体和动作,来帮助我们思考。还有别的想法吗?

  这时,来了一位顾客,他要买3张饼。怎样才能尽快把3张饼都交给顾客呢?今天,我们就一起来研究有关烙饼的问题。(板题:烙饼问题)

  二、合作实践,探究新知

  实践活动(一):探究烙3个饼(13分钟)

  (1)小组合作,摆一摆。

  师:同学们,请你来当大厨,你想怎样烙?

  先独立思考,然后4人小组讨论交流,说说你是怎样安排的,你的方案一共需要多长时间烙完,可以拿出烙饼卡,把书本当*底锅烙一烙。开始。(师巡视)

  (2)说一说。指名汇报本组是怎样安排的。为了让大家看得清楚,我把每次烙每张饼的正反面的情景都展现出来。 预设

  1.一张一张烙。(板书用时)

  2.先烙两张,再烙一张。

  (最优方法没有出现)

  师;我想采访一下大家:对这两种方法,你有什么看法?为什么第二种比第一种省时间?

  生:第一次放两张饼,更好的利用了锅的空位。 师:那烙第三张饼的时候呢?引导发现有一个空位没利用起来,这里可能浪费了时间。

  师:想一想,会不会还有更好的方法呢?

  启发学生发现:让锅里每次都烙2张饼。

  同桌合作探究最优烙法,汇报(交替烙)。

  1.一张一张烙。(板书用时)

  2.先烙两张,再烙一张。

  3.用三张饼的最优方法烙。(交替烙)

  师:谁还能再说一次这种烙法?(课件演示)

  你们有好几种烙饼的方法,真是爱思考的孩子,这说明解决问题的方式可以是多种多样的。(板书:方法多样)

  但是我想采访一下大家:对这三种方法,你有什么看法?

  师小结:看来,充分利用锅的空间,不留空位,就能节省时间。

  其他同学也能像这样用9分钟烙好3张饼吗?

  同桌两人合作,用这种方法再试一试。师巡视

  理解并掌握烙3张饼的最优方法。

  小结:同学们通过思考、操作,不但想出了多种解决问题的方法,还会通过比较,找出最优的方法,真是爱动脑、会动手的好孩子!你们让我想起了一句话:条条大路通罗马。我想给它接下半句——可能有条路最近。最节省空间、时间的路,就是最近、最优的路。(板书:寻求最优)

  实践活动(二):探究烙4、5张饼(6分钟)

  这时又来了两位顾客,分别要买4张、5张饼,怎样尽快把饼给他们呢?小组合作,讨论一下怎样安排,需要的时候也可以用卡片摆一摆,把相关的内容填入表格中。

  1.请同学上台,展示烙4张饼的过程。还有没有别的方法?(板书用时)

  师小结:4张饼,能两张、两张的同时烙就不交替,是最方便的方法。

  2. 说说怎样烙5张饼,(板书用时)引导明确:先同时烙两张再交替烙三张,即分成2+3,最方便最省时间。

  师:刚才我们边活动边把学习成果整理成了一个表格,同学们,相信你们已经找到了解决烙饼问题的钥匙。 (课件出示)

  实践活动(三):算出烙6、7、8、9、10张饼的时间(6分钟)

  1.填表。接下来,烙6、7、8、9、10张饼的最短时间,能与小组成员合作直接填在这张表中,并说说怎么烙吗?汇报最短用时,并说烙法。

  2.优化。我要向你们请教一下,为什么你们填得这么快?你们发现了什么?

  那现在,谁能快速地说出烙15张饼最少需要多长时间?怎么烙?20张饼最少需

  要多长时间?怎么烙?真是反应迅速的小机灵!

  三、结合生活,知识拓展。(2分钟)

  刚刚我们找到了3张饼的最优烙法,可有人觉得把饼拿来拿去太麻烦,还想出了更好的办法,知道是什么吗?当当当当,就是它——电饼铛。上下两面可以同时加热,实现了1个饼只需烙3分钟。对工具进行改造,也能更好的利用空间,节省时间。希望你们将来也能创造出节省时间的新发明,那我会很高兴的!

  四、课堂总结(4分钟)

  师:同学们,这节课你有什么体会和收获?

  小结:在生活中,我们经常会碰到类似的问题,例如出门旅行要考虑选择怎样的路线和交通工具,才能使旅行花钱更少或者花的时间最短;在各行各业,选择最优的方法也能大大提高效率。这种想法是我国数学家华罗庚爷爷提出来的,有兴趣的同学可以在课后继续去了解和研究。

  希望大家在今后的学习和生活中,也能用自己的慧眼多发现问题,解决问题,更好的利用时间。下课!


《烙饼问题》教学设计3篇扩展阅读


《烙饼问题》教学设计3篇(扩展1)

——烙饼问题教学设计5篇

烙饼问题教学设计1

  【学情与教材分析】

  《烙饼问题》是数学广角中“优化问题”的第一课时的内容,主要通过讨论烙饼时怎样合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。这部分知识对学生来说是比较抽象、不易理解的,虽然学生在生活中接触过烙饼,但缺乏烙饼的.实际经验,所以在这节课的教学中,我通过演绎、例举、观察、合作讨论、优化等方法,由直观到抽象,帮助学生理解“怎样烙饼才最合理”的实践策略,从而培养学生初步的优化意识。

  【教学内容】

  义务教育课程标准实验教科书(人教版)四年级上册第112页例1及相关练习。

  【教学目标】

  1、通过解决烙饼问题使学生体会统筹兼顾、合理安排的数学思想。

  2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  3、让学生感受到数学在生活中的应用,培养学生应用意识和解决问题的能力。

  4、使学生逐渐养成合理安排时间的良好习惯。

  【教学重点】

  通过解决烙饼问题使学生体会统筹兼顾、合理安排的数学思想。

  【教学难点】

  在探究活动中,体会科学安排的最优化,体验科学解决问题的方法。

  【教学准备】

  课件,教具,圆片。

  【教学过程】

  一、谈话引入:

  同学们,你们早餐都吃些什么?(牛奶、鸡蛋、豆浆、包子……)看来,大家都很注重早餐的营养搭配。

  1、有同学说早餐吃了煮鸡蛋,老师有个问题想考考大家:煮一个鸡蛋要用7分钟,煮5个鸡蛋要用多长时间?你是怎么想的?

  师小结:把5个鸡蛋同时放到锅里一起煮,既可以节省时间又能节约资源,看来煮鸡蛋是要讲究策略的。

  2、吴老师家早晨喜欢烙鸡蛋饼吃,你知道吗?烙饼也是要讲究策略的哟,这节课我们就来研究烙饼的策略。(出示课题)

  二、探究新知

  出示烙饼要求(课件出示112页例1图片)

  谁来说一说吴老师家烙饼的要求是什么?(帮助理解①每次只能烙两张饼;②两面都要烙)

  1、探索烙两张饼的方法。

  吴老师家有两口人,要烙两张饼,想一想,怎样才能尽快吃上饼呢?

  (1)找1人上黑板上演示(说的同时师在黑板上用图示来表示)。

  (2)大屏演示烙两张饼的过程,理解烙1张饼用了3分钟。(3分钟同时烙了两个面,两个面和在一起就相当于烙了一张饼,所以烙一张饼用了3分钟,2张饼就用了6分钟)

  (3)师小结:两张同时烙就充分利用了锅里的空间,节省了时间和资源,这就是烙两张饼的最佳方法。

  2、探究烙3张饼的最佳方法

  谢谢同学们,让吴老师家的两口人在最短的时间里吃到了这两张饼,可是,两张饼不够吃,想要烙三张饼,早晨时间这么宝贵,请你们为我想想办法,怎样才能在最短的时间里吃上饼呢?

  (1)你可以独立的动脑筋想一想,也可以和你同桌用老师给你准备好的圆片代替饼来烙一烙。(师巡视)

  (2)谁来给大家说一说你们小组是怎么烙得呢?

  ①一个学生演示用12分钟的方法,另一个学生用图示来表示。

  ②学生演示用9分钟的方法。

  a:一个学生演示一遍(演示的过程中师追问:为什么要把2号饼拿出来?还没烙熟呀?)

  b:找两个学生,一个演示一个用图示来表示。

  c:全班独立的摆一摆,掌握烙3张饼的最优方法。

  (3)师小结:9分钟3张烙熟了吗?我们把3张饼交替的来烙,这样就只需要9分钟,我们给这种方法起个名字就叫它“交替法”好吗?(板书交替法)

  (4)对比:同样是烙3张饼,(师手指图示)这种烙法用了12分钟,交替法只用了9分钟,节省了3分钟,这3分钟是怎么节省出来的呢?

  ①结合学生汇报师小结:第一种方案,烙第3次和第4次的时候锅里有空位(“——”标注),这样就浪费了时间;使用交替法,锅里每次都能保证有两张饼,没有空位,所以就节约了时间,节约了资源。像这样交替烙饼的方法就是烙3张饼的最佳方法

  3、总结最优法

  同时烙和交替烙是烙2张饼和烙3张饼的最优方法!最优方法属于数学里“运筹法”的知识。出示课件,了解“运筹法”的有关知识。

  运筹法正是我国大数学家华罗庚爷爷所研究的问题。大数学家想到的方法同学们都想到了,真了不起!看来你们具有当数学家的潜质。

  4、脱离学具,探索烙4张、5张饼的最优方法。

  (1)如果要烙4张、5张饼,不用学具,你能找到烙4张、5张饼的最优方法吗?最少需要几分钟?先独立思考,然后在四人小组里交流交流。

  学生汇报,师小结:突出分成几张几张来烙,最少时间就是这几部分时间相加的和。

  (2)师完成表格。

  5、深化提高、总结规律

  师:要烙6、7、8、9……张饼,又可以分成几张几张来烙呢?所用最少时间是几分钟呢?

  (1)同桌交流完成表格。

  (2)学生汇报完成表格。

  (3)强调烙饼过程的优化。

  (4)师小结。看来同学们已经会用我们今天学习的烙饼的最优化方法来解决数量较多的饼的烙法,就是将较多饼分成几个2张来烙,或是几个2张和1个3张来烙,就是烙这些饼的最优方法,再把几次的最少时间相加,就是烙这些饼所用的最少时间。

  (5)仔细观察表格你发现了什么?小组交流汇报,师生小结:①当烙饼的个数是双数时,就2张2张的烙,当烙饼的个数是单数时,可以先2张2张的烙,最后3张按最佳方法烙,这样最节省时间。②最少时间=饼数×烙一张的时间

  三、巩固应用,深化理解

  1、汽车站附近有一个烤鱼店,店里的烤鱼铁板一次只能放2条鱼,两面都要烤,每面需要4分钟。一位顾客要5条鱼,离汽车开车时间还有10分钟,能来得及烤吗?

  2、烤鱼店里的另一块大烤鱼铁板一次能放3条鱼,两面都要烤,每面需要4分钟。这位顾客要5条鱼,离汽车开车时间还有10分钟,能来得及烤吗?

  四、全课小结

  其实生活中还有很多的优化问题,烙饼只是一个简单的问题,但是它里面有更多的丰富的知识等着大家去思考。老师希望同学们在今后的学习和生活中,合理的安排事情,这样可以提高效率,节约时间。最后送大家一句话:爱迪生说:“人生太短暂了,要多想办法用极少的时间办更多的事情。”

  五、板书设计

  烙饼问题

  2张饼同时1正2正1反2反6分钟

  3张饼交替法1正2正1反3正2反3反9分钟

  【教学反思】《烙饼中的数学问题》是人教版教材第七册数学广角中的内容,通过教学除了教给学生知识外,还要给学生留下点什么,我认为"饼"如何烙最优以及其中蕴含的规律固然重要,但这只是知识技能的范畴,我不想仅停留在就知识教知识的层面上,比知识更重要的是蕴含其中的数学思想和方法,这些才是学生持续发展、终生发展最重要的东西。在同时烙两张饼时,就给孩子渗透3分钟同时烙了两个面,两个面和在一起就相当于烙了一张饼,所以烙一张饼用了3分钟,2张饼就用了6分钟这样的思想,有了这样的数学思想,无论烙几张饼,学生都能迎刃而解。同时,借助学具操作,经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法,在解决问题中初步体会数学方法的应用价值,初体会优化思想。

烙饼问题教学设计2

  【教学目标】

  1、通过教材情境图中展示的信息和需要解决的问题,寻找解决问题的最优方案。

  2、让学生经历从解决问题的多种方案中寻找最优方案的过程,理解优化的思想。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  4、通过各种数学活动,使学生深深地感受到数学与生活的密切联系,逐渐养成合理安排时间的良好习惯。

  【教学重点】

  体会优化思想、探究解决问题的最优方案。

  【教学难点】

  烙3张饼的最优方案。

  【教学过程】

  一、创设情境、生成问题

  1、猜谜语:

  同学们,你们喜欢猜谜语吗?

  投影出示:世界上最快而又最慢,最长而又最短,最*凡而又最珍贵,最易被忽视而又最令人后悔的是什么?

  2、你们知道关于“时间”的名言吗?

  3、这些名言说明什么?

  4、小结:既然时间这样珍贵,那么在做事情之前我们就应该充分考虑怎样通过合理的安排以最短的时间来解决问题,以提高做事的效率。

  5、揭示课题:那今天我们就一起来研究——烙饼问题。(板书:烙饼问题)争取用最短的时间解决这里面的问题,提高做事的效率。

  二、探索交流、解决问题

  (一)初步感知,引发学生思考。

  (师课件出示主题图:)

  1、观察屏幕,你们发现了那些数学信息?

  2、每次只能烙2张饼是什么意思?

  3、那烙1张饼至少需要多少分钟?你是怎样烙的?那6分钟是不是最短的呢?

  4、2张呢?

  (1)12分钟——一张一张的烙。

  (2)6分钟——2张同时烙。

  你觉得哪种方法好?为什么?(省时间)

  像这样的能够同时做的事情,我们放在一起做了,就可以节省时间,在最少的时间完成事情,从而提高了效率,这在数学上我们称为优化。

  5、小结:我们为了节约时间,能同时烙2张饼一定要烙2张。要是一张一张的烙,熟了一张再烙下一张,肯定是浪费时间。

  [设计意图:通过对烙1张饼与烙2张饼的讨论,使学生对烙饼情境和要求有了深入的了解,初步感知要想省时必须充分利用锅内的位置,能同时完成的尽量同时完成。]

  (二)烙3张饼,寻找最优方案。

  1、烙3张饼最少需要多长时间呢?

  2、自主探究,小组合作交流,如果需要可以用圆形纸片当饼帮助我们说明问题。

  3、小组汇报:

  (1)用18分钟:你们是怎样想的?

  一张一张地烙,3张需要烙6次,共需6×3=18分钟。

  (2)用12分钟:

  ①你是怎样烙的?

  先同时烙好饼1、饼2,需要6分钟,再烙饼3,需要6分钟,总共烙了4次,花了12分钟。

  (3)用9分钟:

  第一次先烙饼1、饼2的A面,需要3分钟;第二次烙饼2的B面和饼3的A面,需要3分钟,第三次烙饼1和饼3的B面,也需要3分钟,总共烙了3次,用了9分钟。

  (4)也许大多数同学的答案都是方法二,或方法一,当想不出方法三时,我再引导学生想出方法三。

  引导学生对比烙2张饼的方法和学生烙3张饼的方法二,锅里的饼的数量,发现:在烙3张饼时,本来一次能烙两张饼的锅只烙一张饼,既浪费了能源,又浪费了时间。同学们能不能想出让锅里每次都烙2张饼的方法呢?

  小组再次合作,想出最优方法。(学生上台演示)

  (5)你觉得用时还能不能再短?为什么?

  4、比较12分钟和9分钟两种烙饼方法。

  ①这种方法为什么比上一种方法省时间呢?

  ②小结:看来,要想省时间就得保证锅里总是同时烙2张饼。不能有时烙2张有时烙1张。

  [设计意图:通过观察、对比发现如果锅里每次都同时烙2张饼,最大限度的利用锅里的空间就不会浪费时间了。找到优化的根源,体会优化思想在解决实际问题中的作用,同时培养学生严谨求实的科学精神。]

  (三)发现规律,深化认识。

  1、烙4张、5张、6张饼……怎样烙所用的时间最少?

  2、生独立思考或合作交流。

  3、汇报探究结果

  4、教师出示表格(从1张―――到9张)

  问:“42分钟内最多能烙几张饼?”

  5、师:“烙饼的张数与最后的总时间有什么关系?”

  引导学生说一说,然后教师板书:

  “总饼数×3=最短总时间(1张饼除外)

  师:今天,我们学习了烙饼问题,不仅可以节约时间,还可以提高做事的效率。在我们的生活中还有很多这样的事情可以合理安排。请看:

  三、巩固应用、内化提高

  1、出示教科书114页做一做

  假设两个厨师做每个菜的时间都相等,应该按怎样的顺序炒菜?说说你的理由?

  2、*底锅煎鱼:一只锅每次最多煎两条小黄鱼,煎1条鱼需要4分钟(正、反面各2分钟)。煎7条鱼最少需要多少时间?怎样煎?

  3、复印5张文字资料,正、反面都要复印。如果一次最多放两张,那么你认为最少要复印多少次?你是怎么安排的?

  (说清楚先印2张,需要2次,再印3张有需要3次,一共需要5次)

  四、回顾整理,反思提升

  师:“通过这节课的学习,你们有什么收获?”学生说一说。

  师:“同学们学到了那么多的知识,老师非常高兴,你们高兴吗?课下可以把今天我们学到的知识结合实际生活写一篇数学周记,让我们在运用知识中成长。好吗?下课!

烙饼问题教学设计3

  教学目标:

  1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

  2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

  3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

  教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

  教学难点:寻找合理、快捷的烙饼方案。

  教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

  教学过程:

  一、预设情景,走进生活。

  师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

  生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

  生2:只需要5分钟,把5个鸡蛋一起放进锅里。

  师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

  ——板书:烙饼问题

  (设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

  二、围绕主题,探索新知。

  1、解读信息,理解烙饼规则。

  师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

  生:每次只能烙2张饼;两面都要烙;每面3分钟。

  师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

  2、观察法,探究烙2张饼的最优方法。

  师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

  生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

  师:如果要烙2张饼呢,最少需要几分钟?

  生1:1张饼要6分钟,烙2张饼就要12分钟。

  生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

  师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

  生:2张饼同时烙。

  师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

  3、动手操作,探究烙3张饼的最优方法。

  师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

  (1)学生尝试烙饼。(教师巡视并做个别指导)

  (2)汇报交流。(预计有18分钟、12分钟、9分钟)

  预设: ① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

  ② 先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

  师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

  ③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

  (3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

  (4)集体交流,对比择优。

  师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

  生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

  小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

  你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

  (设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  4、总结方法,探究规律

  (1)脱离学具,思考烙4张饼的最优方法

  师:如果要烙4张饼,怎样烙才能最节省时间?

  师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

  (2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

  生:先烙2个,再烙3个。

  师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

  (3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

  师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

  (4)发现规律。

  师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

  烙饼所用的最少时间与饼的张数有什么关系?

  生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

  先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

  师:“3”是什么?

  生:“3”是烙一面需要3分钟

  师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

  生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

  (设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

  三、全课总结

  今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

烙饼问题教学设计4

  教学目标:

  1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。

  2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。

  3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。

  教学重点:初步培养学生形成从多种方案中寻找最优方案的意识。

  教学难点:寻找合理、快捷的烙饼方案。

  教材简析:《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。

  教学过程:

  一、预设情景,走进生活。

  师: 同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?

  生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。

  生2:只需要5分钟,把5个鸡蛋一起放进锅里。

  师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?

  ——板书:烙饼问题

  (设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效。)

  二、围绕主题,探索新知。

  1、解读信息,理解烙饼规则。

  师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?

  生:每次只能烙2张饼;两面都要烙;每面3分钟。

  师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼。)那如果我只放1张饼行吗? 师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙。)

  2、观察法,探究烙2张饼的最优方法。

  师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?

  生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。

  师:如果要烙2张饼呢,最少需要几分钟?

  生1:1张饼要6分钟,烙2张饼就要12分钟。

  生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。

  师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?

  生:2张饼同时烙。

  师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。

  3、动手操作,探究烙3张饼的最优方法。

  师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节 省时间。

  (1)学生尝试烙饼。(教师巡视并做个别指导)

  (2)汇报交流。(预计有18分钟、12分钟、9分钟)

  预设: ① 一张一张烙:烙一张要:3+3=6(分钟) 烙三张要:6×3=18(分钟)

  ② 先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟) 师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)

  师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?

  ③ 饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)

  (3)同桌合作,再次摆一摆,体验“9分钟的烙法”。

  (4)集体交流,对比择优。

  师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?

  生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。

  小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。

  你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。 板书:交替烙法。

  (设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  4、总结方法,探究规律

  (1)脱离学具,思考烙4张饼的最优方法

  师:如果要烙4张饼,怎样烙才能最节省时间?

  师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。

  (2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)

  生:先烙2个,再烙3个。

  师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)

  (3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。

  师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。

  (4)发现规律。

  师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律) 师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?

  烙饼所用的最少时间与饼的张数有什么关系?

  生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),

  先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价) 生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)

  师:“3”是什么?

  生:“3”是烙一面需要3分钟

  师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?

  生:烙一面的时间。(板书:时间=饼数×烙一面的时间)

  (设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)

  三、全课总结

  今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。

烙饼问题教学设计5

  一、教学内容

  人教版义务教育课标实验教材(四上)112的例1

  二、教学目标

  1、通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应 用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的意识。

  2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。

  3、能积极地参与数学学习活动,体会到学习数学的乐趣。

  三、教学准备:

  多媒体课件;教师准备3个圆片代饼;每组3个圆片;

  四、教学过程

  (一)、谈话导入

  同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。

  (二)新课

  1、自主学习

  (1)出示本节课的学习目标,请同学们朗读。

  (2)在预习的.过程中,同学们阅读了教材主题图,说一说烙饼的前提是什么?

  (3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?

  (4)在小组内交流:烙三张饼最短用多少时间?

  (5)小组汇报:如何烙三张饼用时最短?

  第一张第二张第三张所花时间

  第一次

  第二次

  第三次

  2、探究烙饼最佳方法

  (1)烙4张饼最快要分钟,烙5张要分钟,烙6张要分钟,烙7张要分钟,烙8张要分钟,烙9张要分钟,10张要分钟。

  (2)你发现了什么?

  (3)学生思考、观察、发现、汇报

  烙的方法所花时间

  3张饼

  4张饼

  5张饼

  6张饼

  7张饼

  8张饼

  9张饼

  (三)过关检测

  出示三道小题,请同学们解决,说一说解决的方法。

  (四)、小节

  师:这节课我们一块儿研究了烙饼问题,大家有什么收获?

  小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。


《烙饼问题》教学设计3篇(扩展2)

——《烙饼问题》优秀教学设计3篇

《烙饼问题》优秀教学设计1

  教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。

  教学目标:1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。

  2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题,初步培养学生的应用意识和解决实际问题的能力。

  4、使学生逐渐养成合理安排时间的良好习惯。

  教学重点:寻找合理、快捷的烙饼方案。

  教学难点:初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。

  教具准备:课件、三张圆片

  一、创设情景导入新课。

  课件多媒体出示图片:鸡蛋。

  师:孩子们,请看,这是——鸡蛋。煮熟一个鸡蛋大约用5分钟的时间,煮熟5个鸡蛋大约用多长时?(学生作答)

  师:孩子们,在我们的生活中有很多事情都要讲究策略,今天我们就用数学的眼光来研究烙饼的"策略。(板书课题)

  二、自主探索,探究烙法

  (一):解读信息,理解烙饼规则

  课件出示情境:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?(生答)

  师:每次只能烙两张饼是什么意思?两面都要烙呢?(生答)

  (二)观察法,探究两张饼的最优烙法

  1、明确烙一张饼的时间。

  师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)

  为什么是6分钟?(生答)

  师:为了交流方便,老师用流程图把刚才这位同学说的烙饼过程记录下来。

  板书:一张: 正 反①②③

  3 3 6分

  2、研究2张饼的最优方案

  师:想一想:如果烙两张饼,怎么烙?有几种可能?

  生:12分钟

  师:你是怎么烙的?(生答,师板书)

  板书:两张:①正 ①反 ②正 ②反

  3 3 3 3 12分

  师:还有不同意见吗?生:6分钟。

  师:你是怎么烙的?(生答)师:你能来给大家演示一下吗?(生演示,师板书)

  两张:①正②正 ①反②反

  3 3 6分

  师:孩子们,现在烙两张饼出现了两种不同的答案,哪种烙法最快?那为什么第一种烙法多用了6分钟?

  师:也就是说本来可以两张饼放在一起烙,而第一种每次只烙了一张,浪费了空间,也就浪费了时间,所以多用了6分钟。现在如果要尽快的把饼烙熟,你会选择哪种烙法?(生答)我们给第二种烙法取一个名字,就叫两饼同烙。(板书)

  (三)动手操作,探究3张饼的最优烙法

  师:孩子们,请看大屏幕,现在妈妈要烙几张饼。(3张)看看小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢? (生答)

  师:说得真好。下面我们就一起来动手操作一下,看看怎样才能把3张饼尽快的烙熟,在动手之前,请看清要求。课件出示数学信息,探究要求。

  师:请小组长拿出3张圆片,就当3张饼,小组合作,现在开始。(生摆,师巡视)

  师:同学们,你们的饼烙熟了吗?哪个小组来汇报一下,你们烙3张饼用了多少时间?(生:12分钟)

  说说你是怎么烙的?(生说,师板书)

  3张 ①正②正 ①反②反 ③正 ③ 反 12分

  师:还有不同意见吗?(生:9分钟)请你来说说是怎么烙的?(生边说边演示,师板书)

  3张 : ①正②正 ①反③正 ②反③ 反 9分

  师:同学们,请同学比较这两种不同的烙法,为什么都是烙3个饼一种需要4次,另一种需要3次?

  引导归纳:常规的烙法,先把两个饼放进去,正反面烙完后,再烙第三个。第三个饼的两面得一面一面来,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费时间,最省时间。也就是说我们在*时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实快。这个烙法帮我们解决了数学难题,你能给她取个名字吗?(交替烙、轮流烙)板书:交替烙

  同学们,不管做什么事情,事先作好合理安排,这样就能节约时间,提高效率。所以,生活中我们要合理安排时间。

  三、总结方法,探究规律

  师:接下去要研究4个饼,还是这几个条件,不过要求提高了,你能不能不动手摆就知道怎么烙最节省时间?先静静的想一下,怎样讲解让大家能听明白?实在想不出来的只好借助学具帮忙帮忙。

  1、反馈烙4个饼的方法。

  师:如果烙4个饼,怎么烙?(生答)师板4分成2个2个。能不能说得更简单一些?你可以说2个2个烙。最少花几分钟?如果老师请一个同学上来烙一烙,我们帮她数烙饼的次数,就会发现4个饼最少烙几次?

  2、反馈烙5个饼

  师:如果烙5个饼,怎么烙?你能不能马上说出烙5个饼最少烙几次吗?最少花几分钟?(生答)

  烙6、7、8、9、10个饼出示课件

  师:请你们仔细观察大屏幕上的表格,如果要烙6、7、8、9、10个饼,分别最少要烙几次,需要多长时间?(生答)

  师:请仔细观察这个表格,你发现了什么?

  得出:最短的总时间=烙饼的次数×烙每一面饼时间 (1除外)

  烙饼的次数=烙饼的个数(1除外)

  师:找着了规律解决问题就容易多了,接下来我们运用这条公式来解决一个问题。如:如果要给我们班的每一位同学都烙一个饼,最少需要几次?最少需要几分钟?

  所以,在生活节奏如此之快的社会里,我们更应该合理安排时间,去做更多的事。

  四、结合生活、实践应用:

  五、课堂总结

  师:学了今天这节课,你想说什么?

  师小结:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人。

《烙饼问题》优秀教学设计2

  教学内容:

  教科书第112页到第113页例1

  教学目标:

  1、初步掌握优化思想

  2、能够用优化思想解决生活中的问题。

  3、感受数学的魅力。

  教学重点及难点:

  重点:能够用优化思想解决生活中的问题。

  难点:在烙饼优化的过程中三张饼烙法。

  学具准备:圆形纸片、多媒体课件

  教学过程:

  一、引入。

  师:同学们,你知道吗?我们的许多数学问题都来源于生活,今天我们就来研究一个生活中有趣的数学问题。(板书课题:烙饼问题)

  师:见过烙饼的吗?有同学可能说了不就是一口锅,放进饼去,把它烙熟吗?其实这里面有许多值得研究的数学问题呢!

  二、新授。

  1、师:比方说这里有口锅,每次可以烙两张饼。(边说边拿圆形纸片演示)一张饼的一面3分钟能烙熟,那一张饼多长时间能烙熟?

  生:6分钟

  师:为什么?

  生:因为一张饼一面是3分钟,两面就是6分钟

  师:如果我想烙两张饼呢?需要多少时间?刚刚一张饼用了6分钟,所以两张饼应该会用12分钟,我说的对吗?

  生:(提出疑问)不对,应该是6分钟。

  师:为什么是6分钟呢?

  生:因为里面两张饼都同时在烙。烙熟了这两个面用了3分钟之后,我再把饼翻过来又用了3分钟,所以一共是6分钟。

  师:同意吗?很好。锅里两张饼同时在烙,可以同时烙熟两个面,所以两次一共用了6分钟。(注意强调同时,讲解的时候注意解释。)

  2、突破难点。

  师:现在如果我想烙三张饼,你准备怎么个烙法?说说你的想法?

  生:先烙两张,再烙一张,一共需要12分钟。

  师:你们都的这样烙的吗?那还有没有更好的方法呢?

  (若没有)下面,我们就来试一试,你可以选择喜欢的方法进行研究,也可以利用老师提供给你的圆形纸片,看谁还能想出好办法。

  小组汇报:

  师:谁想上来给大家汇报一下你们组讨论的结果。

  生:汇报讨论结果。

  师:谁听明白了?

  (生再讲一遍)。

  此时教师用纸片往黑板上贴每次的情况。

  师:大家觉得这种方法怎么样?

  生:比上种方法节约时间,比较快。

  师:同学现在根据老师在黑板上的板书想想,为什么这种方法会比上一种方法节约时间呢?(教师的提示语言:我们刚刚在烙第三张饼的时候,本来一次可以烙两张饼的锅却只烙了一张,这就可能浪费了时间。)

  师:那这样才能不浪费时间呢?

  生:(如果锅里每次都是两张饼在烙,就不会浪费时间了。)

  师:所以说,我们*时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

  三、拓展提高。

  师:刚才我们研究了2张饼,3张饼的烙法。如果是4张饼、6张饼呢你觉得怎样烙最节省时间?下面你可以继续在小组里实验一下,你发现什么。

  (生小组研究)

  生:把4看成2+2,把6看成2+2

  (及时的表扬,学数习知识就是这样,当遇到新的问题时,可以先运用以前的知识来解决)

  师:你听明白了吗?她是把4张饼、6张饼,都两张两张的烙,如果是8张、10张饼呢?你想象一下,怎样烙?

  聪明的同学可能发现了,刚才老师让大家研究的饼的张数都是什么样的数?

  生:双数

  你现在能不能总结一下,当饼的张数是双数时,烙饼的好方法是什么?

  生:可以用烙两张饼的方法,两张两张的烙

  板书:双数张饼:两张两张的烙

  师如果是单数张饼,5张、7张……有什么规律吗,讨论一下吧。

  把5张饼烙两张,再把那3张按刚才的好办法烙。

  把7张饼先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

  师:谁能概括的说一说你发现的规律

  生:如果烙单数张饼,可以先两张两张两张的烙,剩下的那3张按刚才的好办法烙。

  师:刚才我们在研究时,按饼的张数分类研究的,其实我们有时在研究比较复杂的问题时,也可以把问题分一下类,这样会更便于进行研究。

  四、师生交流,思维升华。

  师:通过这节课的学习,你知道了什么?

  师:其实,数学来源于我们的`生活,又务于生活,许多生活中的问题,我们通过开动脑筋,都可以寻找到最好的解决方法。相信大家一定会成为有智慧的孩子,让我们的样才能最省时、又省力。只不过,学习数学,是没有简单的方法的,所以希望大家,今后再学数学都能认真学好数学,仔细用好数学

《烙饼问题》优秀教学设计3

  教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。

  教学目标:1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。

  2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题,初步培养学生的应用意识和解决实际问题的能力。

  4、使学生逐渐养成合理安排时间的良好习惯。

  教学重点:寻找合理、快捷的烙饼方案。

  教学难点:初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。

  教具准备:课件、三张圆片

  一、创设情景导入新课。

  课件多媒体出示图片:鸡蛋。

  师:孩子们,请看,这是——鸡蛋。煮熟一个鸡蛋大约用5分钟的时间,煮熟5个鸡蛋大约用多长时?(学生作答)

  师:孩子们,在我们的生活中有很多事情都要讲究策略,今天我们就用数学的眼光来研究烙饼的策略。(板书课题)

  二、自主探索,探究烙法

  (一):解读信息,理解烙饼规则

  课件出示情境:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?(生答)

  师:每次只能烙两张饼是什么意思?两面都要烙呢?(生答)

  (二)观察法,探究两张饼的最优烙法

  1、明确烙一张饼的时间。

  师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)

  为什么是6分钟?(生答)

  师:为了交流方便,老师用流程图把刚才这位同学说的烙饼过程记录下来。

  板书:一张: 正 反①②③

  3 3 6分

  2、研究2张饼的最优方案

  师:想一想:如果烙两张饼,怎么烙?有几种可能?

  生:12分钟

  师:你是怎么烙的?(生答,师板书)

  板书:两张:①正 ①反 ②正 ②反

  3 3 3 3 12分

  师:还有不同意见吗?生:6分钟。

  师:你是怎么烙的?(生答)师:你能来给大家演示一下吗?(生演示,师板书)

  两张:①正②正 ①反②反

  3 3 6分

  师:孩子们,现在烙两张饼出现了两种不同的答案,哪种烙法最快?那为什么第一种烙法多用了6分钟?

  师:也就是说本来可以两张饼放在一起烙,而第一种每次只烙了一张,浪费了空间,也就浪费了时间,所以多用了6分钟。现在如果要尽快的把饼烙熟,你会选择哪种烙法?(生答)我们给第二种烙法取一个名字,就叫两饼同烙。(板书)

  (三)动手操作,探究3张饼的最优烙法

  师:孩子们,请看大屏幕,现在妈妈要烙几张饼。(3张)看看小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢? (生答)

  师:说得真好。下面我们就一起来动手操作一下,看看怎样才能把3张饼尽快的烙熟,在动手之前,请看清要求。课件出示数学信息,探究要求。

  师:请小组长拿出3张圆片,就当3张饼,小组合作,现在开始。(生摆,师巡视)

  师:同学们,你们的饼烙熟了吗?哪个小组来汇报一下,你们烙3张饼用了多少时间?(生:12分钟)

  说说你是怎么烙的?(生说,师板书)

  3张 ①正②正 ①反②反 ③正 ③ 反 12分

  师:还有不同意见吗?(生:9分钟)请你来说说是怎么烙的?(生边说边演示,师板书)

  3张 : ①正②正 ①反③正 ②反③ 反 9分

  师:同学们,请同学比较这两种不同的烙法,为什么都是烙3个饼一种需要4次,另一种需要3次?

  引导归纳:常规的烙法,先把两个饼放进去,正反面烙完后,再烙第三个。第三个饼的两面得一面一面来,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费时间,最省时间。也就是说我们在*时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实快。这个烙法帮我们解决了数学难题,你能给她取个名字吗?(交替烙、轮流烙)板书:交替烙

  同学们,不管做什么事情,事先作好合理安排,这样就能节约时间,提高效率。所以,生活中我们要合理安排时间。

  三、总结方法,探究规律

  师:接下去要研究4个饼,还是这几个条件,不过要求提高了,你能不能不动手摆就知道怎么烙最节省时间?先静静的想一下,怎样讲解让大家能听明白?实在想不出来的只好借助学具帮忙帮忙。

  1、反馈烙4个饼的方法。

  师:如果烙4个饼,怎么烙?(生答)师板4分成2个2个。能不能说得更简单一些?你可以说2个2个烙。最少花几分钟?如果老师请一个同学上来烙一烙,我们帮她数烙饼的次数,就会发现4个饼最少烙几次?

  2、反馈烙5个饼

  师:如果烙5个饼,怎么烙?你能不能马上说出烙5个饼最少烙几次吗?最少花几分钟?(生答)

  烙6、7、8、9、10个饼出示课件

  师:请你们仔细观察大屏幕上的表格,如果要烙6、7、8、9、10个饼,分别最少要烙几次,需要多长时间?(生答)

  师:请仔细观察这个表格,你发现了什么?

  得出:最短的总时间=烙饼的次数×烙每一面饼时间 (1除外)

  烙饼的次数=烙饼的个数(1除外)

  师:找着了规律解决问题就容易多了,接下来我们运用这条公式来解决一个问题。如:如果要给我们班的每一位同学都烙一个饼,最少需要几次?最少需要几分钟?

  所以,在生活节奏如此之快的社会里,我们更应该合理安排时间,去做更多的事。

  四、结合生活、实践应用:

  五、课堂总结

  师:学了今天这节课,你想说什么?

  师小结:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人。


《烙饼问题》教学设计3篇(扩展3)

——数学广角烙饼问题教学设计

数学广角烙饼问题教学设计1

  一、教学内容:

  人教版数学四年级上册教材第112页到第113页例1。

  二、教学目标:

  1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。

  2、在问题探究、动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生观察能力与独立思考能力,发展学生的思维。

  3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。

  三、教学重、难点:

  重点:能够用优化思想解决生活中的问题。

  难点:在烙饼优化的过程中三张饼烙法。

  四、教、学具准备:

  圆形纸片若干、多媒体课件

  五、教学过程:

  (一)谈话导入:

  同学们,你们早餐吃了什么呀?老师小时候住在农村,没什么好东西吃,最盼望的是妈妈给我烙饼吃。见过烙饼的吗?大家知道烙饼是怎么烙出来的吗?(看视频)烙饼里面可有大学问哦,这个烙饼问题可是数学界中的名题之一哦,大家有兴趣去研究它吗?好,今天我们就一起来研究烙饼问题!(板书课题)

  (二)探究新知:

  1、出示情境图,呈现问题。

  (1)提问:你从画面上得到哪些数学信息?

  (2)想想,如果只烙一张饼,需要多长时间?

  (3)如果要烙两张饼,最快需要几分钟?

  (4)学生说方案,对好的方法进行鼓励并命名。

  (5)通过对比,初步培养学生寻找优化方案解决问题的意识。

  2、探究三张饼的烙法。

  (1)烙3张饼,至少需要多少时间?同座相互配合,用老师给你准备的三张小圆片烙一烙,想好后举手回答。

  (2)学生分组动手操作。

  (3)除了这些方法以外,那还有没有更好的方法呢?

  (4)指名学生上台演示汇报。

  (5)引导学生比较方法的异同优劣,并为最有优方法命名。进一步让学生感受到寻找优化方案解决问题的重要性。

  (7)多媒体课件演示最佳方案,学生跟着老师一起再用最佳方案操作一遍。

  3、讨论烙4—7张饼至少需要的时间。

  (三)寻找规律:

  1、初探规律,引起猜想质疑。

  2、验证规律,总结规律。

  3、同学们的发现很有价值,那为什么除了一张饼,无论饼的个数是双数还是单数,所需分钟数都等于饼的个数乘3呢?

  4、强调:所以说,我们*时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。

  5、假如现在问你烙40张饼要多少时间,你能很快告诉大家答案吗?烙41张呢?你是怎么算出来的?

  (四)解决问题:(课件展示)

  师:类似烙饼这样的问题,在生活中还有许多,我们走进生活再看一看。

  1、*底锅煎鱼:一只锅每次最多煎两条小黄鱼,煎1条鱼需要4分钟(正、反面各2分钟)。煎7条鱼最少需要多少时间?怎样煎?

  2、复印51张文字资料,正、反面都要复印。复印一面要5秒钟时间,一次最多放两张,全部复印完要至少多少时间?

  3、美味餐厅来了3个客人,每人点了两样菜,假设两个厨师做每个菜的时间相等,应该按怎样的顺序炒菜?如果你是餐厅经理,你会怎样安排上菜顺序使3个客人都满意呢?

  (五)课后延伸:

  一口大锅一次能烙10张饼,两面都要烙,每面需要3分钟。烙15张饼需要多少时间?

  (六)课堂总结:

  师:通过这节课的学习,你知道了什么?

  我们做任何事情的时候都要开动脑筋,寻找最佳方案,合理安排时间,这样就能取到事半功倍的效果。我希望同学们都做一个勤于思考、珍惜时间的好孩子!


《烙饼问题》教学设计3篇(扩展4)

——《用除法解决问题》教学设计5篇

《用除法解决问题》教学设计1

  教学内容人教版《义务教育课程标准实验教科书》二年级下册第54—55页例2—例3。

  教学目标:

  1、通过实践活动,使学生理解一个数是另一个数的几倍的含义,体会数量之间的相互关系。

  2、使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

  3、培养学生的合作意识,提高学生的探究能力。

  教学重点:

  使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的`数量关系的过程,会用乘法口诀求商的技能解决实际问题。

  教学难点:

  应用分析推理将“求一个数是另一个数的几倍是多少”的数量关系转化为“一个数里含有几个另一个数的除法含义”。

  教具准备:

  教师准备课件、小棒、学生每人准备20根小棒、20个圆片。

  教学过程:

  一、复习导入新课

  1、师生做拍手游戏。

  [设计意图]活跃课堂气氛,拉近师生关系,激发学生学习数学的热情。

  2、摆一摆:

  (1)第一行摆2根小棒,第二行是第一行的3倍,第二行是多少?

  (2)第一行摆2根小棒,第二行是第一行的4倍,第二行是多少?

  3、小结:我们刚才一起复习了有关“倍”的知识,今天我们继续学习有关“倍”的数学问题。

  [设计意图]:从学生以有的知识出发为学习求“一个数是另一个数的几倍”做好知识上的铺垫。

  二:合作探究新知

  1、要求学生用4根小棒摆一个正方形,再在第二行摆2个正方形,说一说第二行摆2个正方形用的根数里有几个一个正方形的根数。

  2、(1)摆飞机,数一数用几个小棒摆出一架飞机?

  (2)指导学生摆飞机。

  (3)引导学生仔细观察思考(针对学生回报摆的结果),谁能根据你摆的飞机,提出一个问题让大家猜一猜,引出一个数里含有几个另一个数的除法含义,也就是他们摆的根数是老师摆的几倍。

  (4)如果再摆一架飞机,这时飞机根数是老师摆的几倍?

  (5)回报结果,让学生在探究中找到“求一个数是另一个数的几倍是多少”的解题思路。即:求一个数是另一个数的几倍的含义就是“求一个数里含有几个另一个数”用除法计算。像刚才摆飞机就是求15里面有几个5,15里面有3个5,也就是15是5的3倍。说明“倍”是一种关系,不是单位总称,所以3后面什么也不用写。

  3、看一看,比一比(出示课件)

  (1)萝卜3个,茄子6个,茄子的个数是萝卜个数的几倍(6里面有几个3)。

  (2)萝卜2个,茄子6个,茄子的个数是萝卜的个数的几倍(6里面有几个2)。

  [设计意图]:让学生由生活中的食物联系到倍数关系,因为数学本来就来源于生活。

  (3)摆圆片(动手操作)

  a、第一行摆4个○,第二行摆8个○。

  b、第一行摆3个○,第二行摆9个○。

  4、考考你

  8里面有()个48是4的()倍

  12里面有()个312是3的()倍

  24里面有()个624是6的()倍

  42里面有()个742是7的()倍

  三:运用知识解决问题

  1、教学例3

  (1)仔细看图,从图中你获得了哪些信息?

  (2)引导学生思考,想一想,怎样解决“唱歌人数是跳舞人数的几倍。

  (3)引导学生独立解决问题。

  (4)让学生说出自己的想法,并组织学生集体订正。

  (5)还能提出什么问题。(根据学生的思路解决)

  2、引导学生做一做

  [设计意图]:重点突出学生的自主参与,独立思考。教师在这一过程中扮演着引导者的角色,要把充分的学习时间还给学生。

  3、归纳小结:求一个数是另一个数的几倍,就是求一个数里有几个另一个数,只是说法不同,用除法计算。

  四、巩固深化

  1、练习十二(第1题)要求学生认真看图(1)图中有些什么动物?(2)分别是多少只?(3)独立分析解决,小鹿的只数是小猴的几倍?(4)为什么这样列式?(5)还能提出其他问题吗?

  2、独立完成第2题

  3、观看课件拓展

  (1)观察各种书籍的本数。

  (2)完成题中的问题。

  (3)还能提出问题吗?

  五:课堂小结

  教学反思:

  本课时,我在教学中充分让学生动手操作,在实践中体会“求一个数是另一个数的几倍”就是“求一个数里有几个另一个数”的除法含义,采取摆一摆、比一比、考考你等学习形式。学生在快乐,轻松的探究中学习掌握了本课时的知识,达到预计的目的。不足之处,是教师的巡视不够,导致学困生没有落到实处,在今后的教学中要不断的学习、探索先进的教学经验、制作学生喜欢的课件。尽可能让每一个学生都学到有用的数学知识。

《用除法解决问题》教学设计2

  教学内容

  人教版《义务教育课程标准实验教科书·数学》三年级上册“有余数除法”,教学例4,练习十三的第2、6题。

  教学目标

  (一)知识与技能

  初步培养学生在具体的.生活情境中收集信息,提出问题并解决问题的能力。

  (二)、过程与方法

  通过学生的观察、探索等学习活动,使学生经历从生活数学到数学问题的抽象过程,感受知识的现实性。

  (三)、情感态度与价值观

  在学习过程中,通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。

  教学重点

  引导学生结合商和余数在实际情境中的含义正确写出相应的单位名称。

  教学难点

  运用恰当的方法和策略解决实际问题。

  教学准备

  教师:课件。

  学生:表格。

  教学过程

  一、 激趣导入,引出课题。

  教师:同学们,我们先来猜做个游戏好不好?

  出示课件:想一想,第十六个图形是什么样的?第35个呢?第98个呢?

  教师:咱们运用有余数的除法就可以解决这个问题。

  教师:同学们真厉害,猜得非常准确,其实这就是用有余数的除法解决实际问题。

  教师:这节课要学习的内容就是“用有余数的除法解决问题”。

  板书课题。

  二、尝试问题,自主学习。

  (1)显示例4的主题图,让学生观察。

  教师:在同学们的体育活动当中也会出现有余数的除法的实际问题,大家请看!

  提问:从这幅图中你看到了什么?

  你能根据图中的有效信息提出数学问题吗?

  生1:有32个同学

  生2:老师要求每6人一组

  生3:可以分几组,还多几人?

  (课件同步出现:可以分几组,还多几人?)

  师: 你能帮老师解决这个数学问题吗?

  师:请同学们用自己的方法算一算,开始吧。

  (2)自主学习,尝试解决问题。

  教师:小帮手们动作可真快!请两位小帮手给大伙儿说说你的计算方法。

  师:哪位同学给大家说说自己的算法?

  教师根据学生的口述板书,

  如果有的学生没有写出单位,这时提问:

  师:这里的商5表示什么意思呢?余数2呢?那单位各是什么呢?(根据商和余数的单位提问:

  教师:你们知道这里的商5表示什么意思吗?余数2呢?

  生:商表示可以分5组,余数表示还多2人。)

  (3)出示练习十三的第2题。

  师:下面这道有关跳强绳的问题怎么解决呢?看谁做得又对又快!

  19-8=11(米) 11÷2=5(根)……1(米)

  答:可以做5根短跳绳,还剩1米。

  三、探究合作,解决问题。

  教师:同学们,当你的练习本用完后,你一般会怎么处理它呢?

  生1:把它扔了。

  生2:卖给废品回收站。师:你可真会节约再利用资源。

  教师:这些纸是可以重复利用的。

  播放课件。

  看完后出示:

  据调查统计,在一所有一千名小学生的学校里,一个月可回收废纸约2万张。按1000张纸重约1千克计算,卖给废品回收站可得人民币20元。如果同学们*时收集牛奶盒、矿泉水瓶、饮料瓶等可利用资源,可换得人民币35元。今年我省不少地区遭受到了洪灾,我们可以拿这些钱为灾区小朋友做些什么呢?

  生1:把这些钱捐给他们。

  生2:用这些钱购买学习用品送给他们。

  教师:同学们可真有爱心!

  出示课件。

  教师:这里出现了什么问题?你能解决吗?

  教师:第二个问题你能想出不同的方法吗?各小组可以先讨论,再写下各位购买方案。

  教师:请同学们拿出表格,将自己认为最好的购买方案进行整理,填写在表格内。开始吧!

  学生一边讨论教师一边巡视,学生讨论完填写好表格后,老师提问。

  教师:谁愿意来展示自己的解决方法?

  教师:同学们觉得这个同学的方案好吗?好在哪里?你认为不足之处在哪?你有什么好的设计方案?

  学生说完后老师小结,进行思想教育。

  教师:废物再利用可以给我们带来这么好的效益,*时的学习生活中大家可得注意回收,这样既可以保护环境,还可以节约能源,让我们来争当环保节能的小公民吧!

  四、课外延伸,拓展思维。

  师:三年级一班的同学们也利用废物回收,换来了一些班费,组织大家进行了一次旅行,在旅行中他们遇到了一些问题,请看!

  出示第6题的情景图。

  先让学生观察“丛林探险”情景图。让学生从两名同学的对话以及图中的指示牌,获得数字信息,解决“坐车”和“租船”问题。

  师:从图中同学们可以获得哪些信息?

  生:丛林探险活动每辆小车坐6人。

  生:我们班有44人。

  生:激流勇进游戏每条船坐5人。

  师:小男孩小女孩提出了什么问题?

  生:如果全班都玩“丛林探险”,最多可以坐满几辆车?会有剩余的人吗?

  生2:如果都玩“激流勇进”,应该租几条船呢?

  师:请同学们自己先自个儿想想,然后在小组内说说自己的方法,并列出算式,说明理由。

  (1)坐车问题:44÷6=7(辆)……2(人)

  答:最多可以坐满7辆车,还剩余2人。

  提问:剩余这2人怎么安排呢?

  生:再坐一辆车。

  (2) 租船问题:44÷5=8(条)……4(人)

  教师:你对这种租船方法有什么看法吗?

  教师:你可真会发现问题。

  教师:剩下的4个人不去了吗?怎么办呢?

  师:应该租几条船呢?为什么?

  教师:你为什么要把8加1呢?

  8+1=9(条)

  答:应该租9条船。

  教师:你考虑得可真周到!

  教师:同学们在外游玩的时候可得注意安全哦!

  五、结束课题。

  教师:这节课你学会了什么?你有什么感今天受?对自己和他人有何评价?你还有什么疑问吗?

《用除法解决问题》教学设计3

  教学过程:

  一、激趣导入

  师:同学们,春天轻轻悄悄地又来了。小朋友说说,你眼中的春天是怎么样的?

  师:你们的春天真美!汪老师眼中的春天是生机勃勃,百花争艳。

  二、探究新知

  1、教学例2

  (1)师在黑板上先摆一朵花

  师:瞧!黑板上现在就开了一朵花!这朵花有几片花瓣呢?

  生:5片

  (板书:5)

  师:老师再来摆几朵!

  (2)师在第二行摆2朵

  师:看,第二行我摆了几朵花呢?

  生:2朵。

  师:第二行用了几片花瓣呢?

  生:10片

  师:你是怎么想的?

  生:摆一朵花用5片花瓣,摆两朵花要用2个5片,就是10片。

  师:2个5片是10片。(板书:2个5)

  师:10和5比,10是5的几倍呢?

  生:2倍

  师:为什么呢?

  生:10里面有2个5,所以10是5的2倍。(2倍,2个)

  师:说得真好!谁再来试一试呢?

  (板书:10是5的2倍)

  (请3~4个学生回答)

  (3)学生摆花

  师:如果老师给你们15片花瓣,这样的花你能摆几朵呢?

  生:3朵

  师:是吗?我们同桌合作摆一摆。

  师:15片花瓣这样的花你们摆了几朵?

  生:3朵。

  师:没摆之前你们为什么快就知道是3朵呢?

  生:3个5片,就是15片。

  (板书:3个5)

  师:15和5比,你也能这么说吗?

  生:15是5的3倍。

  师:你真是聪明,谁还能再来说一说呢?

  (请个学生回答)(齐说)

  师:那为什么15是5的3倍呢?

  生:因为15里面有3个5,所以15是5的3倍。

  (4)练习

  师:15和5比,15是5的3倍。35和7比,35里面有()个7,35是7的()倍;

  师:全体男同学来回答,28里面有()个4,28是4的()倍。

  (5)学生摆花

  师:如果我有20片花瓣摆花,说说这样的花我能摆几朵呢?

  生:4朵。

  师:你是怎么想的啊?

  预测1:

  生:因为4个5是20,所以是4朵。

  (板书:4个5)

  预测2:

  师:还有别的想法吗?

  生:因为20是5的4倍,所以是4朵。

  师:现在20和5比,求20是5的几倍,你能列算式吗?在草纸上写一写。

  (5)教学除法算式

  20÷5=4

  师:我请一位同学说说算式是怎么写的。

  师:你们都是这么写的吗?那么20÷5=4表示什么意思呢?

  生:20里面有4个5;20是5的4倍!

  师:真行!谁能把这两句话完整又流利地说一说!

  (3~4个)

  师小结:求20是5的几倍我们可以用除法计算。

  师:这里汪老师还要提醒一下,倍不是单位名称,所以4的后面倍不用写。

  师:15是5的3倍,你能用算式表示吗?

  (写在草稿纸上)

  生:15÷5=3

  师:这个算式又表示什么意思呢?

  (2个人)

  师:真不错!看来求10是5的几倍没问题了吧!我们一起来列算式!

  (板书:10÷5=2)

  师:同桌说说这个算式表示什么意思。

  师:我想听听你们怎么说的,可以吗?

  (5)小结

  师:同学们,像这样求一个数是另一个数的几倍的倍数问题,我们通常可以用除法进行计算。下面跟随汪老师走进生活,去找找生活中这样的数学问题,去解决这样的数学问题。

  (板书:求一个数是另一个数的几倍)

  3、尝试运用,解决数学问题

  (1)师:春天可是个锻炼身体的好季节。

  电脑出示运动图片

  师:瞧!这里可真热闹!小朋友都在干什么呢?

  生:拔河,跑步

  师:跑步有几人呢?拔河的有几人?

  师:那么拔河的人数是跑步的几倍呢?谁来说一说?

  生:4倍

  师:怎么列算式呢?

  学生列式:16÷4=4

  师:谁来说说这个算式的意思?

  生:16里面有4个4,16是4的4倍。

  师:越说越好了!

  (2)师:操场的这里也很热闹,你都看见了什么啊?

  师:数一数,丢手绢的有几人,唱歌的`有几人呢?

  师:丢手绢的人数是唱歌的几倍?

  师:草稿纸上列出算式。

  师:异口同声告诉我算式

  师:这里有两个8,除号前的8表示什么?除号后的8表示什么?

  师:解释得很清楚,求丢手绢的人数是唱歌的几倍,列式时就得是丢手绢的人数去除以唱歌的人数。

  三、巩固练习

  1、师:我们身边的倍数问题还有很多,看!从他们的对话中你发现了知道了什么?

  师:根据这些数学信息你能提一个有关倍数的数学问题吗?

  师:听清楚了吗?好,谁愿意再来说一说!

  师:在草稿纸上列出算式。

  2、统计图中的数学问题

  师:同学们这是什么吗?认识吗?

  生:统计图

  师:这张统计图大家可能都认识,上学期学习统计的时候就出现过!当时同学们利用数学知识发现了这些数学信息。那通过今天的学习,你们又能发现什么新的数学信息呢?

  师:我也发现了,你们看!

  小结:同样一张统计图,但随着同学们知识的增长,发现统计图中还有倍数关系。

  3、师:好,下面咱们走出校园到郊外去看看!

  师:根据这些数学信息你又能提出些什么的数学问题呢?

  师:同学们不仅问题提得好,回答的也不错,所以送你们几个灿烂的笑脸。

  4、涂一涂,涂出倍数关系

  师:白色的笑脸有几个?

  师:下面拿出准备好的两支水彩笔,在笑脸上涂一涂,涂出倍数关系。

  学生涂色

  师:红色的笑脸有几个?绿色的笑脸有几个?他们存在什么倍数关系呢?

  四、拓展延伸

  1、师:你都学会了哪些知识啊?

  2、师:最后我再来考你们一道题目,小朋友今年6岁了,妈妈36岁了,你知道妈妈的岁数是小朋友的几倍吗?

  生:4倍。

  师:这么快怎么知道的啊?

  师:请同学们想一想,去年妈妈的岁数是小朋友的几倍呢?

  生:7倍

  师:你怎么算出来的呢?

  3、师:在美好的春天,听着同学们这么精彩的发言,我感到特别的温暖。希望同学们趁着好季节多出去走走,去发现更多身边的数学问题。

《用除法解决问题》教学设计4

  教学内容:人教版数学第四册54~55页例2、例3,练习十二的第1、2题。

  教材分析:

  《一个数是另一个数的几倍》是人教版义务教育课程标准实验教材小学数学第四册第四单元《用除法解决问题》中的内容。本课教学之前,学生已经初步理解“倍”的含义和除法含义,并且学习过求一个数的几倍是多少,这些都为本课内容的学习作了知识铺垫。本课时,用除法解决“求一个数是另一个数的几倍是多少”的实际问题,安排在教学用7~9的乘法口诀求商之后,其匠心在于加深学生对除法含义的理解,让学生领会“一个数是另一个数的几倍”的含义,并学会解决求一个数是另一个数的几倍实际问题。同时,使学生了解除法计算与实际生活的联系,培养学生应用数学的意识,发展解决问题的能力。

  这个传统的教学内容,新教材由浅入深安排了两个例题,例2,通过摆飞机模型的主题活动,在操作观察中让学生建立“一个数是另一个数的几倍”的概念;例3,通过观察情境图,从图中获取相关数学信息,引导分析推理,探究出“求一个数是另一个数的几倍”的一般解法。学习这部分内容,不仅有助于学生体会两个数量之间的倍数关系,学会解决求一个数是另一个的几倍的实际问题,也为今后进一步学习有关“倍”的实际问题作好了思路孕状。教学时应引导学生应用已掌握的“倍”的概念和“求一个数的几倍是多少”的先前经验学习“求一个数是另一个数的几倍是多少”的实际问题。教学中精心组织操作活动,让学生通过自身活动理解一个数是另一个数的几倍是多少的数量关系,初步体会数量之间的内在关系;通过解决实际问题,有意识地让他们经历将一个具体问题抽象为数学问题的过程,经历运用除法的含义确定算法的过程,使学生初步懂得应如何数学地思考问题,如何用数学的方法来处理有关的信息,如何合理地计算出结果。

  解决问题是本单元教学的重要内容。教学时,一方面要用学具进行操作,为学生的有条理的思考提供感性材料的支持,另一方面要用现实生活中的实际问题引导学生理解问题的含义。最后通过一组有层次的练习帮助学生巩固加深。

  教学设计思路:课前准备,做好铺垫创设情境,激趣引入学习“一个数是另一个数的几倍”的含义(学生动手操作中感知)自主探索出“求一个数是另一个数的几倍是多少”的计算方法(小组合作交流)引导学生自己提出“求一个数是另一个数的几倍是多少”的问题组内交流,解决问题巩固练习课堂小结(小结学习内容,课堂表现)

  教学目标:

  1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互关系。

  2、使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

  3、使学生会用自己的语言表达解决问题的大致过程和结果。

  4、通过动手实际操作,培养学生动手操作的能力和合作意识。

  教学重点:使学生经历从实际问题中抽象出一个数是另一个数的几倍的过程,会用乘法口诀求商的技能解决实际问题。

  教学难点:应用分析推理将一个数是另一个数的几倍是多少的数量关系转化为一个数里面有几个另一个数的除法含义。

  教学准备:

  教具:多媒体课件。

  学具:每人准备(10根或15根)小棒。

  课前准备:

  1、教师和学生谈话,让学生说说自己的理想是什么。

  2、做伸手指的游戏:

  (1)教师伸几根手指,请学生伸出是老师的几倍的手指数。

  (2)伸出8根手指,每2根分一份,看看能分成几份。

  〔设计意图:融洽师生关系,在课前活动中复习有关求一个数的几倍是多少和除法的含义,为新内容的学习作铺垫。〕

  教学过程:

  一、创设情境,激趣引入

  师:首先请同学们来收看一段视频。(课件播放有关国庆60周年阅兵仪式中空中梯队的视频)

  师介绍飞行员刘欣:刚才大家看到的是国庆60周年阅兵式上空中梯队的精彩表演,在这些飞行员中有一名女飞行员,她的名字叫刘欣(出示刘欣的照片)。刘欣姐姐小时候就是青山区的一名学生。我们要像她一样从小树立自己的理想,并且要努力去实现它。小红的理想就是长大后能当一名飞行员。你们看,她用小棒摆了一架飞机。(将小红的图片和用小棒摆成的飞机的图片贴在黑板上)

  〔设计意图:收看视频,既可以对学生进行爱国教育和理想教育,又可以很自然的引出主题,调动学生的积极性〕

  二、教学例2

  1、学习“一个数是另一个数的几倍”的含义。

  (1)师:老师也给你们准备了一些小棒,你们想用小棒摆飞机吗?先让我们一起来看看怎么用小棒摆飞机。请你一边看一边数:几根小棒能摆一架飞机?(动画演示用5根小棒摆飞机的过程)

  〔设计意图:动画演示用5根小棒摆飞机的过程,既让学生知道怎样用小棒摆飞机,避免操作过程中出现不会摆的现象,同时又能强化一倍数。〕

  (2)提问:几根小棒能摆一架飞机?(指名回答;根据学生回答,教师板书:5根)

  (3)师出示小丽的图片和一捆小棒(将小丽的图片贴在黑板上),问:小丽有10根小棒(板书:10根),猜一猜她能摆几架这样的飞机?(指名答)

  师出示小强的图片和一捆小棒(将小强的图片贴在黑板上),问:小强有15根小棒(板书:15根),猜猜他能摆几架这样的飞机?(指名答)

  〔设计意图:让学生猜小丽、小强各能摆几架这样的飞机,引导学生向几里面有几个几靠,不让学生说理由,等到学生动手操作,充感知后再来探讨。〕

  师:谁想来帮小丽摆一摆?教师将小丽的10根小棒给1名学生,摆在小丽旁边画好的方框中。

《用除法解决问题》教学设计5

  教学内容:人教版《义务教育课程标准实验教科书数学》二年级下册第54-55页的内容

  教学目标:(1)通过实践活动使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互联系。

  (2)使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

  (3)培养学生的合作意识,提高学生的探究能力。

  教学重点:

  使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的数量关系的过程,会用乘法口诀求商的技能解决实际问题。

  教学难点:

  应用分析推理将“一个数是另一个数的几倍是多少”的数量关系转化为“一个数里面含有几个另一个数的除法含义。”

  教具准备:课件、小棒等

  教学过程:

  (一)复习

  1.二年级(2)班学习舞蹈的有3人,学习绘画的人数是学习舞蹈人数的2倍,学习绘画的有多少人?a.抽生回答,并讲一讲思考过程;b.请学习绘画的6位同学向大家挥挥手,再汇报一下自己的学习成绩,教师向取得优异成绩的同学表示祝贺。

  2.二年级(2)班学习唱歌的有6人,学打乒乓球的是学习唱歌的3倍,学打乒乓球的有多少人?

  3.二年级(2)班学习弹琴的有4人,学吹号的是学习弹琴的4倍,学吹号的有多少人?

  (二)动手操作,探究新知

  1.出示第54页例2主题图(动画课件)

  师:你们想参加这个游戏活动吗?

  2.活动:学生动手摆飞机;(播放音乐)

  3.汇报结果

  师:根据你摆的飞机,谁能提个问题让大家猜一猜?

  引出“求一个数里含有几个另一数的除法含义”

  4.课件出示例题中小强提出的问题:“我摆了3架飞机,我用的小棒根数是小红的几倍?

  5.小组讨论

  6.汇报结果,学生在动脑思考、充分探究中找到了“求一个数是另一个数的几倍是多少”的解题思路,即“求一个数是另一个数的几倍”的含义,就是“求一个数里含有几个另一个数”用除法计算。15÷5=3

  (三)运用知识,解决问题

  1.课件出示例3情境图

  2.学生根据画面提出用除法计算的问题;

  3.根据所提问题,小组讨论解决方法;

  4.学生独立列式解答;

  5.抽生讲解题思路;

  (四)巩固深化,质疑拓展

  基本练习:完成第55页的做一做自己独立分析题目,然后解答师:还可以提什么问题?

  学生自选一问解答,并相互说一说自己为什么这样做?

  变式练习:

  完成第56页练习十二的第1题

  1.要求学生认真看图,图中画了哪些小动物?分别是多少只?2.自己独立分析解决:小鹿的只数是小猴的几倍?(列式是:18÷6=3)

  3.提问:为什么这样列式?

  师:你还能提出其它问题吗?(学生相互解决)

  (五)全课总结

  这节课你有什么收获呢?


《烙饼问题》教学设计3篇(扩展5)

——《用加法解决问题》教学设计3篇

《用加法解决问题》教学设计1

  教学目标:

  1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。

  2、培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。

  3、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。

  4、通过合作交流,使学生体验到合作的快乐,学习的愉悦。

  教学准备:实物投影

  教学重点、教学难点:用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。

  教学过程:

  (一)、学前准备

  老师听算,学生计算在课堂练习本上。

  3×5+4= 5×7+1= 4×9+8=

  6×8+5= 8×3-6= 9×9-9=

  指名订正答案,生自己改正。

  [设计意图]:通过准备练习,为新课的学习做好铺垫。

  (二)、探究新知

  1、教学例3(投影出示教材第8页主题图)

  (1)谈话引人:

  师:前两节课我们一起解决了游乐园里看木偶戏的人数和孩子们买面包后,面包师傅还剩多少个面包的问题。下面我们一起到跷跷板乐园去看看,好吗?

  引导生观察理解图意和提出问题。

  教师有选择的板书:

  有3组小朋友在玩跷跷板,每一组有4人。又来了7人,一共有多少人?

  (2)小组交流讨论

  a、应该怎样计算跷跷板乐园一共有多少人?

  b、独立思考后,把自己的想法在组内交流。

  c、选派组内代表在班中交流解决问题的方法。

  d、把学生解决问题的方法记录在黑板上。(有一种写一种特别让学生思考还可以怎样算)

  a. 4+4+4+7=19(人)

  4×3=12(人) 12+7=19(人)

  4×3+7=19(人)

  b.2+2+2+2+2+2+7=19(人)

  6×2=12(人) 12+7=19(人)

  6×2+7=19(人)

  c. 4+4+4+4+3=19(人)

  4×4+3=19(人)

  d.4+4+4+7=19(人)

  (3)比较各种方法的异同。

  明确名种方法的结果都是求跷跷板乐园一共有多少人,只不过在解决问题的思路上略有不同。

  (4)小结:用乘加和加法两个分步算式解决的问题,我们可以合写成一个乘加的综合算式,这样算式更加简洁。

  [设计意图]:使学生在观察事情的发生、发展过程中明确条件,提出问题并自主解决。体会用多种方法进行解答。

  2、做一做。(投影出示教材第9页图)。

  师先引导生仔细观察主题图,获得已知信息。

  师:你能提出那些数学问题?会解答吗?

  (先让生独立思考后在小组内交流,然后指名汇报)

  (树上原来有10只小鸟,飞走了4只,又飞来了3只,树上现在有多少只小鸟?)

  10-4+3=9(只) 10+3-4=9(只) ……

  (三)、巩固练习:

  1、练习二第1题(投影出示主题图)

  让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。

  2、练习二的第2题(投影出示主题图)

  让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。同时对学生进行尊老爱幼的教育。

  [设计意图]:让学生在交流、实践中掌握知识。充分利用主题图的作用。

  (四)、课堂作业设计(视情况,投影出示)

  1、小白兔种了7 行胡萝卜,每行8个。准备送给小黑兔10个,小白兔还剩几个胡萝卜?

  2、小明看一本故事书,看了4天,每天看6页,还剩13页没有看。这本故事书一共有多少页?

  3、妈妈买来2盒月饼,每盒有9块。送给奶奶6块,还剩多少块月饼?

  4、小力买了5 个练习本,每本1元,他又买了一把尺子花了3元钱,小力一共花了多少钱?

  (五)小结

  这节课你有什么收获?你能把我们今天学会的知识解决我们身边的问题吗?

  指名答后师小结:在我们生活中,对同一个问题可以从多种角度去观察、思考,从而发现问题、提出问题、解决问题。

  教学板书:

  用乘法和加法(减法)两步计算解决问题

  a. 4+4+4+7=19(人)

  4×3=12(人) 12+7=19(人)

  4×3+7=19(人)

  b. 2+2+2+2+2+2+7=19(人)

  6×2=12(人) 12+7=19(人)

  6×2+7=19(人)

  c. 4+4+4+4+3=19(人)

  4×4=16 (人) 16+3 =19(人)

  4×4+3=19(人)

  d.4+4+4+7=19(人)

  教学反思:

  乘加的知识对于孩子们来说有所接触,而且计算也没有什么问题。但是出现在实际问题之中时,有的孩子就不一定会想到用乘加的方法来解决实际问题,反而有个别的孩子习惯了用连加的方法。当然在提倡算法多样化的今天,孩子用连加的方法计算并没有什么大的.问题,但学习是一步一步深入的,学生也不可能始终停留在用加法计算。所以,在以后的练习中我重点引导孩子们用简单的乘加法来解决一些实际问题。通过进一步的练习强化,孩子们也体会到了两种方法的异同,并能根据实际情况灵活的选择“好”、“优”的方法。


《烙饼问题》教学设计3篇(扩展6)

——《相遇问题》教学设计 (菁选5篇)

《相遇问题》教学设计1

  教学目标:

  1、了解相遇问题的特点,并学会解答求路程的相遇问题。

  2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

  3、培养学生学习数学的兴及趣创新意识。

  教学重点:

  掌握求路程的相遇问题的解题方法。

  教学难点:

  理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

  教学时间:

  一课时

  教具准备:

  实物投影仪、多媒体CAI、小黑板

  教学过程:

  一、复习

  1、列式计算

  (1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?

  (2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?

  2、板出关系式:速度×时间=路程

  二、引入

  过去,我们研究的是一个物体运动时速度、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的关系。

  三、新授

  1、教学准备题

  (1)点击课件中准备题出示题目

  (2)学生理解题意。

  (3)找出出发时间、地点、运动方向。

  相向而行

  时间间

  (4)点击热键和强调出发时间和运动方向。

  (5)用课件演示两人同时从两地向对方走去,引导学生思考会出什

  么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

  (6)利用课件出示准备题的表格,指导学生填表格的一、二行并课

  件演示填空内容。

  (7)请一学生上来利用交换性课间完成表格第三行的填写。

  (8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?

  (9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)

  2、教学例5。

  (1)点击新课出示例5。

  (2)理解题意。

  (3)四人小组讨论:

  a、两人是怎样走向学校的?

  b、4分钟后两人怎样?

  c、两人所行的路程与全路程有什么关系?

  (4)学生试做。

  (5)用电脑课件演示解题思路并讲评。

  (6)学生看书、质疑。

  (7)小结:我们解例5时用了哪两种方法?

  三、巩固练习

  1、学生做课本第59页的第1题和第2题。

  2、利用课件出示选择题:

  两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?

  (1)20xx米

  (2)1000米

  (3)无法确定。

  四、全课总结

  1、今天学了什么内容?

  2、解决这样的问题,我们用了哪几种方法?

  3、质疑。

  五、聪明题。

  小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?

《相遇问题》教学设计2

  一、 分析教材,理清思路

  本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

  本节课的教学目标是:

  1、 知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

  2、 能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。

  3、 情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的喜悦。

  在实施知识目标过程中,重点是让学生在做中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

  二、 优选教法,注重学法

  学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

  三、 优化程序,突出主体

  本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。

  (一) 创设情境

  1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)

  2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

  [建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

  (二)实践探究

  1、理解意义

  (1)揭示课题相遇问题

  (2)制定目标看到这个课题,你想研究哪些内容?

  (教师依学生所说归纳出学习目标并板书:意义、规律、应用)

  (3) 联系生活提问:在实际生活中还有哪些情况属于相遇问题?

  (4) 归纳小结要想出现相遇的情况应具备哪些条件?

  (板书:两个物体、同时、两地、相对、相遇)

  (5) 教师指出本节课侧重研究两个物体同时行进的规律。

  [数学源于生活,生活中充满数学,让学生说说生活中相遇问题的"实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]

  2、 实践操作(小组合作)

  (1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。

  (2)每行进一次把数据填入表中。

  行的次数 红色线段长 兰色线段长 两色线段长度和 两色线段距离

  1 3 2 5 10

  2 6 4 10 5

  3 9 6 15 0

  (3)观察表中的数据,研讨发现了什么?

  [设计这一实践活动的目的,是让学生在做中感受两物体同时从两地相向而行的运动规律:

  ①两者之间的距离越来越小,直至为0,即相遇了;

  ②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;

  ③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]

  3、 应用规律

  例:(媒体出示)90页,例3

  (1) 自己选择学习方式

  A 独立完成(鼓励用多种解法)

  B 借助教材(依据小标题列式解答)

  C 请教同学

  (2) 指名板演,讲解思路

  [在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]

  (三) 巩固深化

  1、 口答:

  先说说解答思路,再列式计算目的是巩固新知。

  小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分钟两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)

  2、 自选让学生依个人掌握知识情况,选择练习题。

  (1)练习十八 1、2

  (2)两辆汽车同时从一个地方向相反的方向开出,甲车*均 每小时行44.5千米,乙车*均每小时行38.5千米。经过3小时,两车相距多少千米?

  3、 编题:

  小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

  [设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

  (四) 课后小结

  谈一谈本节课有什么收获?

《相遇问题》教学设计3

  一、 分析教材,理清思路

  本节知识是在学生初步掌握了速度、时间、路程的关系之后进行的教学。本内容和实际生活有一定的联系,借助生活原型,可更好地解决数学问题。学好此内容,也为后继学习做好铺垫。

  本节课的教学目标是:

  1、 知识目标:明确相遇问题的特点;理解基本数量关系;正确分析解答相遇问题。

  2、 能力目标:通过本节课的教学,培养学生动手操作、分析、推理能力及探索创新、合作学习的意识。

  3、 情感目标:通过本内容和实际相结合的教学,激发学生的学习兴趣,让学生体验到成功的喜悦。

  在实施知识目标过程中,重点是让学生在“做”中发现规律,从而理解相遇问题的数量关系,掌握解答方法。

  二、 优选教法,注重学法

  学生学习知识是接受的过程,更是发现、创造的过程,好的教法是引导学生自己去发现,主动去探索。课上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。教师则是一个组织者、指导者、帮助者及促进者。除此之外,我还有针对性地引导学生选择学习方法,使不同层次的孩子学到不同的数学,使每个孩子都体验到成功的喜悦。

  三、 优化程序,突出主体

  本节课的教学流程是:创设情境、实践探究、巩固深化、课后小节。

  (一) 创设情境

  1. 引发思考:每天早晨背着书包来上学,马路上是一番怎样的景象?(学生们会很快地说出:车多、人多)

  2. 播放录像:注意观察马路上的车辆在行驶的方向上有哪些情况?(在现实的情境中,学生发现了车辆在行驶的方向上有以下情况:相对、相反、同向)

  [建构主义的教学观强调用真实的情境呈现问题,营造问题解决的环境,以帮助学生在解决问题的过程中活化知识,变事实性知识为解决问题的工具,从而完成对新经验意义的建构以及对原有经验的改造和重组。基于此,课始创设了一个与现实生活紧密联系的情境,使学生能主动地在与情境的交互作用中学习。]

  (二)实践探究

  1、理解意义

  (1)揭示课题——相遇问题

  (2)制定目标——看到这个课题,你想研究哪些内容?

  (教师依学生所说归纳出学习目标并板书:意义、规律、应用)

  (3) 联系生活——提问:在实际生活中还有哪些情况属于相遇问题?

  (4) 归纳小结——要想出现相遇的情况应具备哪些条件?

  (板书:两个物体、同时、两地、相对、相遇)

  (5) 教师指出——本节课侧重研究两个物体“同时”行进的规律。

  [数学源于生活,生活中充满数学,让学生说说生活中相遇问题的实例,使学生感受到数学与现实生活的紧密联系,增强学习和应用数学的信心,调动学生学习数学的积极性,在这一良好状态下去发现数学知识。]

  2、 实践操作(小组合作)

  (1)利用相遇卡,两位同学同时从两端行进,一位每次行3厘米,另一位每次行进2厘米。

  (2)每行进一次把数据填入表中。

  行的次数 红色线段长 兰色线段长 两色线段长度和 两色线段距离

  1 3 2 5 10

  2 6 4 10 5

  3 9 6 15 0

  (3)观察表中的数据,研讨发现了什么?

  [设计这一实践活动的目的,是让学生在“做”中感受两物体同时从两地相向而行的运动规律:①两者之间的距离越来越小,直至为0,即相遇了;②相遇时,两者所用的时间是一样的,各自所行路程之和等于总路程;③因为速度有快有慢,所以,在相遇时,各自所行路程有多有少。学生在活动中把直接经验内化为知识能力,更好地去理解相遇问题的解题规律。]

  3、 应用规律

  例:(媒体出示)90页,例3

  (1) 自己选择学习方式

  A 独立完成(鼓励用多种解法)

  B 借助教材(依据小标题列式解答)

  C 请教同学

  (2) 指名板演,讲解思路

  [在例题的教学中,突出让学生借助实践经验解决问题。屏弃了过去的整齐划一的教法,对在实践活动中体验好的学生,让他们独立完成;对善于与人交往的学生,让他们向同学请教;对乐于借助教材的学生,让他们看书,依提示解决问题,最大限度地发挥了学生的主动性。]

  (三) 巩固深化

  1、 口答:

  先说说解答思路,再列式计算——目的是巩固新知。

  小明和小芳同时从自己家出发相向而行。小明每分走42米,小芳每分走48米。经过4.5分钟两人在学校相遇(学校在两家位置之间)两家相距多少米?(用两种方法解答)

  2、 自选——让学生依个人掌握知识情况,选择练习题。

  (1)练习十八 1、2

  (2)两辆汽车同时从一个地方向相反的方向开出,甲车*均 每小时行44.5千米,乙车*均每小时行38.5千米。经过3小时,两车相距多少千米?

  3、 编题:

  小红每分跑300米,小明每分跑320米,自己设计运动情况并编题。

  [设计开放性的练习,使学生在发散性、多维度的思维活动中提高解决实际问题的能力。]

  (四) 课后小结

  谈一谈本节课有什么收获?

《相遇问题》教学设计4

  教学目标

  1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.

  2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.

  3.渗透运动和时间变化的辩证关系.

  教学重点

  掌握求路程的相遇问题的解题方法.

  教学难点

  理解相遇问题中时间和路程的特点.

  教学过程

  一、以旧引新

  (一)口答列式,并说明理由.

  1.一辆汽车每小时行60千米,4小时行多少千米?

  2.一辆汽车4小时行了240千米,每小时行多少千米?

  3.一辆汽车每小时行60千米,行驶240千米需要几小时?

  教师板书:速度×时间=路程

  (二)创设情境

  1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”

  2.小组集体讨论

  (1)张华送到李诚家;

  (2)李诚来张华家取走;

  (3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.

  3.认识相遇问题

  (1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?

  (同时,从两地,相对而行)

  (2)两个人之间的距离有什么变化?(越来越近,最后变为零)

  教师指出:当两个人的距离为零时,称为“相遇”

  具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”

  板书课题:相遇问题

  (三)出示准备题:

  张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.

  根据已知条件填写下表

  走的时间

  张华走的路程

  李诚走的路程70米

  两人所走路程的和

  现在两人的距离

  1分

  60米

  70米

  2分

  3分

  思考:

  1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)

  2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)

  二、教学新课

  (一)教学例3

  小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?

  1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.

  请同学解释这两个词的含义.

  2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)

  3.由学生尝试解答例3

  4.结合线段图订正答案.

  方法一:65×4+70×4 方法二:(65+70)×4

  =260+280 =135×4

  =540(米) =540(米)

  速度和×相遇时间=路程

  5.比较

  (1)两种算法哪一种比较简便?

  (2)两种算法之间有什么联系?

  三、巩固练习

  (一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?

  (二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?

  讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?

  板书:出发地点:两地

  出发时间:同时

  运动方向:相向(相对、对面)

  运动结果:相遇

  (三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?

  (四)两辆汽车同时从一个地方向相反方向开出.甲车*均每小时行44.5千米,乙车*均每小时行38.5千米.经过3小时,两车相距多少千米?

  1.由学生用手势表述题意.

  2.比较:与前面题目相比,有什么不同?又有什么共同之处?

  (五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.

  甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?

  1.由学生用手势语言向同组同学介绍题意.

  2.由学生独立解答

  3.出示四种不同解法,请同学小组讨论并做出判断.

  方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2

  方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)

  四、课堂小结

  通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?

  (相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动……)

  今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?

  怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?

  五、课后作业

  (一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?

  (二)两辆汽车同时从一个地方向相反的方向开出.甲车*均每小时行44.5千米,乙车*均每小时行38.5千米.经六、板书设计

  过3小时,两车相距多少千米?

《相遇问题》教学设计5

  教学要求:

  1.认识相遇问题的特点,学会分析相遇问题的数量关系,能用两种方法解答相遇问题中求总路程的应用题。

  2.使学生形成两个物体运动的空间观念。

  3.进一步培养学生分析应用题的能力,并从中培养思维的灵活性。

  重点:认识相遇问题的结构特点,理解和掌握两种解题方法。

  难点:理解第二种解法的思路。

  课前准备:布置课前预习提纲:

  1. 把表格填完整。

  2. 出发3分后,两人的距离变成了多少?说明了什么?

  3. 两人3分所走路程的和与两家的距离有什么关系?

  教学过程:

  一. 复习。

  (一)口答下面应用题:

  ⑴张华每分走60米,走了3分,一共走了多少米?

  ⑵一列汽车从甲城开往乙城,用了5小时,*均每小时行42千米, 甲、乙两城相距多少千米?

  师问:这两道题的数量关系是什么?板:速度时间=路程

  (二)引入:

  师:这两道题都是讲一个人或一个物体运动的情况,这节课我准备研究两个人或两个物体运动的情况。

  二. 新授:

  (一)认识相遇问题的特点。

  ⑴多媒体出示鸭子图,让学生观察:

  ①这两个鸭子出发的时间怎样?

  ②走的方向怎样?

  ③最后它们怎样了?

  ⑵多媒体演示后,学生回答刚才老师的问题。

  板:时间:同时出发

  方向:相向而行

  结果:相遇

  (二)出示课题及学习目标。

  ⑴师:这节课我们研究的就是两个物体同时出发的,相向而行的,最后相遇的这一类应用题,也就是相遇问题。

  ⑵出课题:相遇问题

  ⑶出学习目标:

  ① 理解相遇 、速度和的概念。

  ② 会用两种方法解答。

  (三)教学准备题

  ⑴多媒体演示表格,填表,师:昨天老师布置了3道预习提纲让同学们预习课本P58-59,现在来检查一下你们的预习情况。

  ⑵指名回答提纲①,填表格。

  ⑶指名回答提纲②,出示相遇。

  ⑷指名回答提纲③,出示两家的距离正好是两人3分所走路程的和。

  小结:这道题他们是同时出发的,相向而行的,最后他们相遇了。

  (四)把准备题改成例题

  ⑴出示例题:张华和李诚同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米,经过3分,两人相遇。他们两家相距多少米?

  ⑵审题:

  ①师问:张华和李诚出发的时间怎样?走的方向怎样?结果怎样 了?

  ②指名回答。

  ③师问:问题是求什么?求两家相距多少米也就是求张华和李诚的什么?

  ④指名回答。

  ⑤板:他们两家相距的米数正好是两人3分所走路程的.和。

  ⑶教学第一种解法。

  ①多媒体演示第一种解法的思路。

  ②学生根据演示列式计算,

  板:603+703

  =180+210

  =390(米)

  ③学生讲解题思路。

  ④板:先求两人各自走的路程,再加起来。

  (4)教学第二种解法。

  ① 师问:还有别的解法吗?让学生试着列出式子。

  ② 通过多媒体演示,帮助学生理解第二种解法的解题思路。

  ③ 四人小组讨论解题思路。

  ④ 指名回答解题思路,板:先求速度和,再求总路程。

  ⑤ 齐读。

  (5)对比,小结。

  师:这两种方法都是相遇问题中求总路程的,这两种方法的思路相同吗?结果相同吗?

  (五)学习例5。

  (1)多媒体出示自学提纲,学生自学P58例5。

  提纲:①课本用了几种解题方法?

  ②每一种解题方法的思路是什么?

  (2)指名回答提纲。

  (3)通过两道例题的教学,引导学生总结出第二种解法的关系式:速度和时间=路程,并齐读一次。

  (4)质疑。

  四、巩固练习:

  1、 课本P59做一做1。

  2、 课本P59做一做2。

  3、 根据算式补充条件或问题:(多媒体出示)

  ① 两人同时从两地相对走来,甲每分钟走45米,乙每分钟走54米,经过4分钟两人相遇。 ?(45+54)4

  ② 两列火车同时从两站相向开出,甲车每小时行48千米,乙车每小时行52千米,,两站间的铁路长多少千米?

  485+525

  ③ 王师傅和*共同加工一批零件,王师傅每小时加工25个,,两人一共加工4小时正好完成任务,这批零件有多少个?(25+20)4

  4.只列式不计算。(多媒体出示)

  ① 两辆汽车同时从两地相对开出,3小时相遇,甲每小时行45千米, 乙车每小时比甲车快5千米,两地相距多少千米?

  ② 李明和小冬同时从某地出发,背向而行,李明每分走55米,小冬每分走60米,经过4分,两人相距多少米?(多媒体演示背向而行)

  五.小测:

  ⑴甲、乙两人同时从两地面对面走来,经过6分相遇,(如图),求两地间的总路程。

  法一:①相遇时,甲行了多少米?列式:

  ②526表示:

  ③ 两地间的总路程,列式:

  法二:④两人的速度和,列式:

  ⑤两地间的总路程,列式:

  ⑵选择:(把正确答案的序号填在括号里)

  ① 两辆摩托车同时从一个地方向相反方向开出,甲车每小时行42千米,乙车每小时行53千米,2.5小时后两车相距多少千米?( )

  A(42+53)2.5 B(53-42)2.5 C 42+532.5

  ② 客车和卡车分别从两地同时相向而行,客车每小时行45千米,卡车每小时比客车少行5千米,3.5小时后两车相遇,两地间的距离是多少千米? ()

  A (45+5)3.5 B (45-5+45)3.5C (45+5+45)3.5

  ⑶列式解答:

  甲、乙两个小组从两地同时相向挖一条水渠,甲组每小时挖42米,乙组每小时挖38米,经过3小时正好挖完。这条水渠共长多少米?

  多练题:两地相距100千米,甲、乙两人骑自行车同时从两地相对出发, 甲每小时行14千米,经过4小时与乙相遇。相遇后再经过2小时,甲、乙两人相隔多少千米?

  六.小比赛

  ⑴两列火车同时从两个城市相对开出,甲列车每小时行50公里,乙列车每小时行40公里,经过4小时相遇。两个城市间的铁路长多少公里?( )

  A 50+404 B (50+40)4 C 504+404 D 40+504

  ⑵客轮和货轮同时从两个港口对开,16小时相遇。客轮每小时行28千米,货轮每小时行24千米。两个港口相距多少千米? ( )

  A (28+24)16B 2416+28C 2816+24 D 2824+2816

  ⑶小刚家在学校南面,志华家在学校北面。小刚每分走65米,走到学校用8分;志华每分走64米,走到学校用7分。求小刚家到志华家有多远? ( )

  A 658+647B 657+648 C (65+64)(8+7) D (65+64)7+65

  ⑷甲乙两人同时从两地出发,相向而行,甲步行每小时走5公里,乙骑自行车每小时走16公里,3小时后两人还相距7.5公里,求两地间相距多少公里? ()

  A (16+5)3+7.5 B (16+5)3-7.5

  C 163+53+7.5 D (16+5+7.5)3

  ⑸甲乙两人各从所在村相对出发,甲每小时走11公里,乙每小时走10公里,相遇时甲走4小时,乙比甲少用1小时,两个村间有多少公里? ( )

  A 114+101 B 114+10(4-1) C 114+10(4+1)

  D(10+11)4-10 E (10+11)3+11

  七.总结。师:这节课学习了什么?这类应用题有几种解法?

  八.作业:P61 1、2


《烙饼问题》教学设计3篇(扩展7)

——比例解决问题教学设计 (菁选3篇)

比例解决问题教学设计1

  教学内容:

  人教版课标教材六年级下册第59—60页 例5、例6。

  教学目的:

  1、让学生掌握用正、反比例的方法解决问题。

  2、使学生体验由算术解法向比例解法的思维转化过程。

  3、形成解题多样化技能。

  教学重难点: 重点:学会用正反比例方法解决问题。

  难点:在具体情境中区别用何种比例解决问题。

  教学过程:

  一、 复习

  师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

  (出示题目)

  1、a×b=c(a、b、c均不等于0)

  当a一定时,b和c成什么比例?

  当b一定时,a和c成什么比例?

  当c一定时,a和b成什么比例?

  2、速度×()=路程

  工作总量÷( )=工作时间

  ( )×数量=总价

  总本数÷( )=每包本数

  每袋重量×( )=总重量

  师:这节课,我们一起来学习用解决问题。

  二、 新授

  1、出示例5

  ① 学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。

  ② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

  水费:吨数=单价

  ③ 学生述说,教师板演用正比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

  (2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

  (3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

  小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

  2、出示例6(学生自己解答)

  ① 抓住不变的东西----总的本数判断成反比例关系

  ② 建立关系式:每包本数×包数=总数

  ③ 学生述说,教师板演用反比例解法的书写过程。

  ④ 出示书上第二问,学生回答列式。

  巩固练习:

  (1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

  (2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

  (3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

  3、深化练习:

  一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

  三、全课小结

比例解决问题教学设计2

  教学内容:

  教科书第59页例5以及相关练习题。

  教学目标:

  1、使学生能正确判断题中涉及的量是否成正比例关系。

  2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

  3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

  4、在成功解决生活中的实际问题中体会数学的价值。

  教学重点:

  利用已学的`正比例的意义,通过自己探索掌握解答正比例应用题的方法。

  教学难点:

  正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

  教具准备:

  小黑板

  教学过程:

  一、复习铺垫,激发兴趣。

  1、填空并说明理由。

  (1)速度一定,路程和时间成( )比例。

  (2)单价一定,总价与数量成( )比例。

  (3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

  【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

  3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

  生1:把旗杆放下量。

  生2:爬上去量。

  生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

  师:相信通过这一节课的学习,你一定会找到解决的方法的。

  【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

  二、揭示课题、探索新知。

  1、小黑板出示例5

  张大妈:我们家上个月用了8吨水,水费是12.8元。

  李奶奶:我们家用了10吨水,上个月的水费是多少钱?

  思考:题中告诉了我们哪些信息?要解决什么问题?

  师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  (1) 学生自己解答。

  (2) 交流解答方法,并说说自己想法。

  算式是:12.8÷8×10

  =1.6×10

  =16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

  (也可以先求出用水量的倍数关系再求总价。)

  10÷8×12.8

  =1.25×12.8

  =16(元)

比例解决问题教学设计3

  【教材分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。

  【学情分析】

  本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。

  【教学目标】

  1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。

  2、提高学生分析解答应用题的能力,培养探索精神。

  【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。

  【教学难点】分析和理解两个数量的比校对于学生来说比较难些。

  【教学过程】备注

  活动一:创设情境,初步感知题意。

  1、教师出示例2的情境图。

  2、让学生结合图叙述题意。

  活动二:动手画图,分析题意。

  1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?

  学生动手画线段图,分析。小组交流。

  与教师共同再一次感受如何画线段图。(教师板书)

  重点让学生明确谁是单位1。

  2、让学生说一说是怎样想的?确定解题的思路。

  3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。

  4、全班交流,订正。

  5、问:这两种解法有什么区别?有什么联系?

  活动三:教学例3.

  教师出示例3。

  1、引导学生读题,理解题意。

  2、根据这句话应当把什么看单位1?

  3、学生试画出线段图,分析数量关系。

  4、学生自己解答。

  订正时,让学生说说是怎样分析的?与全班交流。

  活动四:巩固练习。

  1、完成21页中的做一做。

  教师要求学生画线段图。

  2、完成练习五中部分练习题。

  订正时,让学生说说分析的思路。

  活动五:课堂小结。

  通过本节课的学习你都有哪些收获?

相关热词搜索: